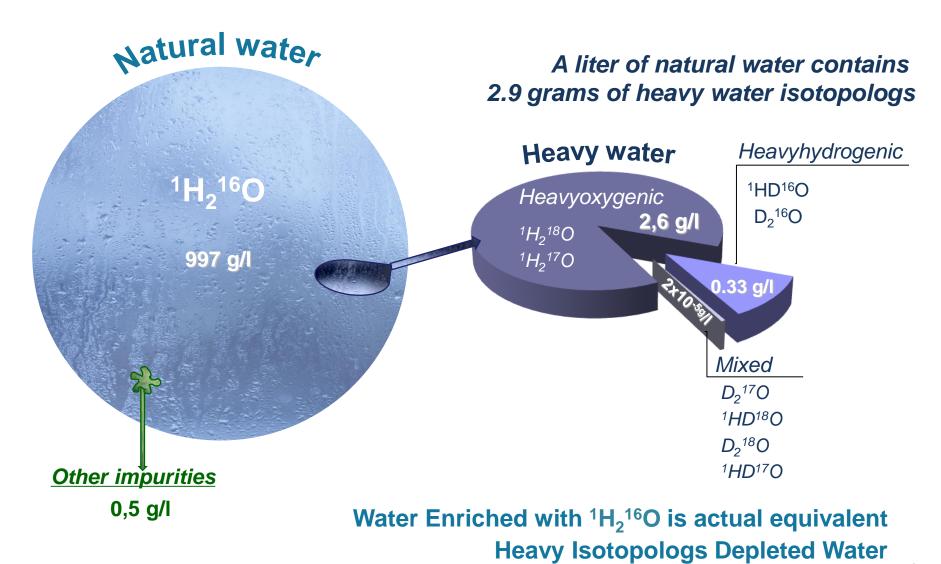
Physiological Effects of Drinking Water Enriched with ¹H₂¹⁶O

T.N. Burdeynaya, A.S. Chernopyatko ZAO "Light water", Moscow, Russia

Fudin N. A.

P.K.Anokhin Institute of Normophysiology of Russian Academy of Medical Science, Moscow, Russia


Manufacturing and science

Certified industrial production in Russia **ISO 9001 certification in process** Own scientific research of physical and biological properties of Water Enriched with ¹H₂¹⁶O

Molecular composition of natural water

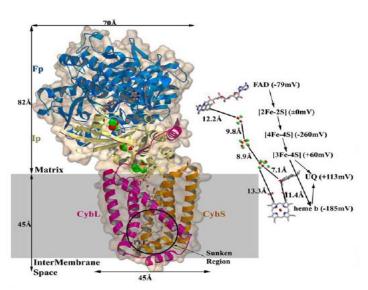
Kinetic solvent isotope effect

Chemical reaction:

$$A \longrightarrow B$$

Isotope effect = $k(H_2O)/k(D_2O)$

Reaction	Isotope effect
Enzyme catalysis	≈ 2
Oxidation-reduction reaction* (Transfer pair H+ - e)	30 ÷ 455


^{*} My Hang V. Huynh, Thomas J. Meyer Colossal kinetic isotope effects in proton-coupled electron transfer // PNAS. 2004 V. 101 no. 36. PP. 13138-13141

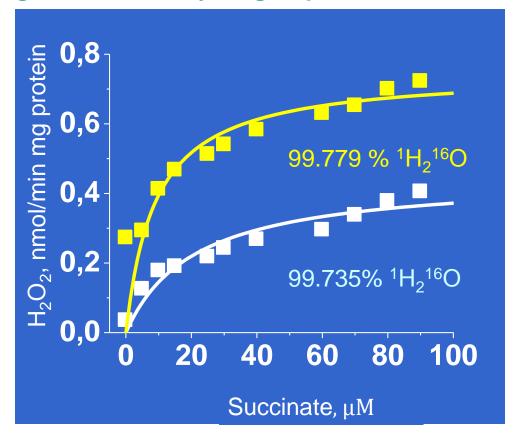
Solvent isotope effect in the biochemical reactions

In biological systems with long sequences of reactions and cooperative effects usually insignificant 0.27% of heavy water considerably slows down these processes

Complex II
Part of respiratory
chain of mitochondria

Cooperative transfer of pair proton(H+) electron(- e) in a complex II:

Succinate \rightarrow [FAD] \rightarrow [2Fe-2S] \rightarrow [4Fe-4S] \rightarrow [3Fe-4S] \rightarrow heme b \rightarrow UQ


Complex II

The molecules of heavy water inhibit the reactions of the mitochondrial respiratory chain - main energy reactions of the organism 5

Improving cellular respiration

Kinetics of the generation of hydrogen peroxide as a marker of cell energy

Model - isolated rat liver mitochondria with succinic acid (succinate) as a substrate

I.A. Pomytkin, O.E. Kolesova // Bulletin of Experimental Biology and Medicine. 2006. V.142. N 5. P.570-572

Water enriched with ¹H₂¹⁶O disinhibits the reaction of generating the hydrogen peroxide

To test whether water enriched with ¹H₂¹⁶O may improve functional performance during aerobic exercises in healthy people

P.K.Anokhin Institute of Normophysiology of RAMS

The design of study

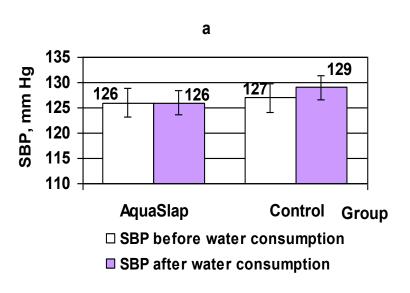
28 days						
Drinking water	D/H, ppm	Number of volunteers	Age, years	Body mass index	Volume of consumed water per day, litres	
Group 1 AquaSlap TM water	90	14	21,1 ± 1,3	24,8 ± 1,7	1	
Group 2 Control water	140	6	20,5 ± 1,6	23,0 ± 1,2	1	

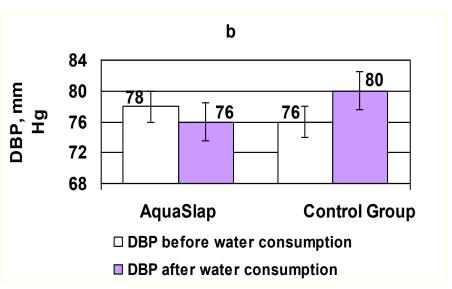
The level of the light isotopologs in AquaSlap™ water corresponds to Standard Light Antarctic Precipitation

The measured indicators

- blood tests
- clinical
- biochemical
- immunological
- hormonal
- antioxidant activity
- psychological and vegetative status
- lung function
- gas exchange
- level of health provision
- physical performance

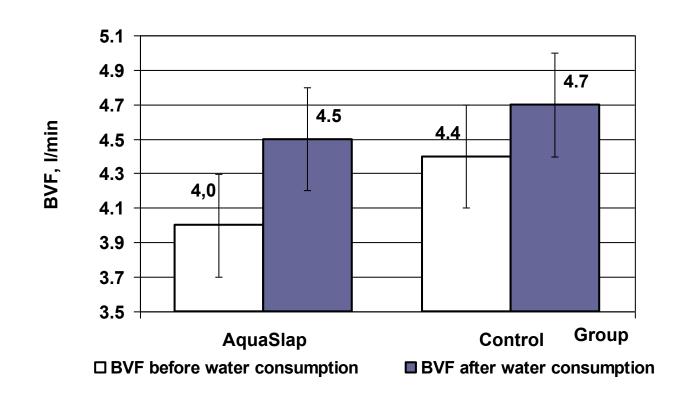
The differences in blood indicators


The significant (p<0,05) differences in blood indicators before and after AquaSlap water consumption by test persons


Indicator, unit of measurement	The range of norms	Before consumption	After consumption			
Complete blood count						
Eosinophils, %	0-5,0	2,8±0,4	1,1±0,3			
Basophil leukocytes, %	0-1,0	1,0±0,0	0,4±0,1			
Lymphocytes, %	19,0-37,0	40,5±1,9	35,1±1,6			
Monocytes, %	2,0-10,0	4,8±0,3	7,0±0,5			
Biochemical blood analysis						
Clorides, mmol/l	98-107	102,6±0,1	101,5±0,3			
Hormonal blood tests						
T3 - triiodothyronine, ng/ml	0,8-2,0	1,5±0,1	1,2±0,1			
Thyroidstimulating hormone, mkmE/ml	0,4-4,0	2,5±0,3	1,4±0,2			
Insulin, IU/ml	6,0-27,0	5,3±0,8	8,0±0,7			

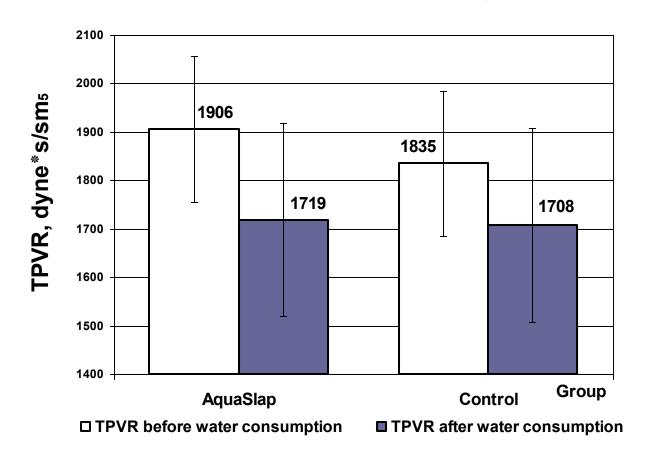
The blood pressure

There were no any significant differences in average values of blood pressure



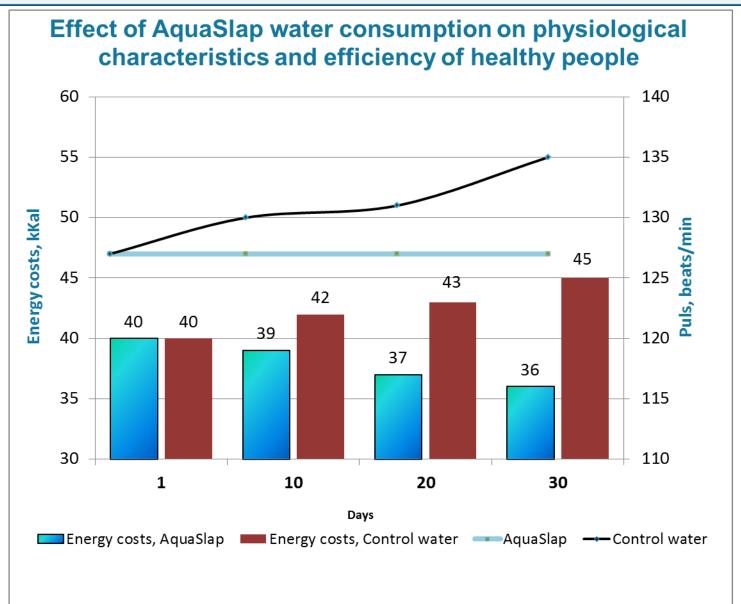
a - systolic blood pressure (SBP) b - diastolic blood pressure (DBP) before and after water consumption by test persons

The blood volume flow per minute


Average values of blood volume flow per minute (BVF) before and after water consumption by test persons

The peripheral vascular resistance

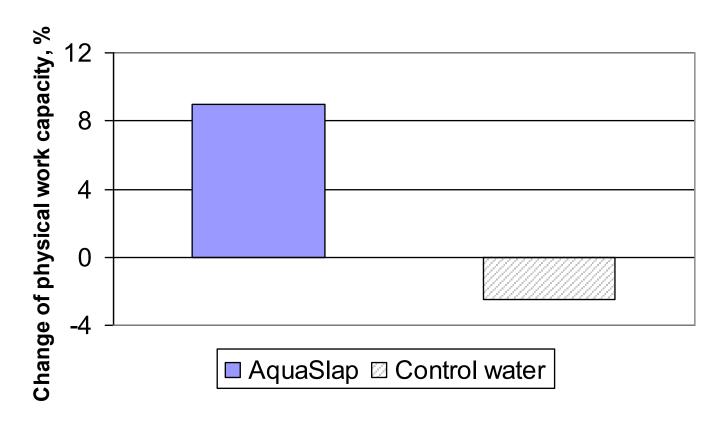
Average values of total peripheral vascular resistance (TPVR) before and after water consumption by test persons



Improving functional performance

Gas exchange parameters

Drinking water	The change of level CO ₂ emission, %	Heart rate, beats/min	
	After water consumption	Before consumption	After consumption
Group 1 AquaSlap water	- 11	127	127
Group 2 Control water	+ 11	127	135



Improving physical performance

Change of physical performance after water consumption

- Water enriched with ¹H₂¹⁶O facilitates mitochondrial respiration due to the de-inhibition of protoncoupled electron transfer
 - The de-inhibition of proton-coupled electron transfer provides involvement previously arrested mitochondrial "facilities" in energy production in cells
 - An improvement of energetic metabolism with water enriched with ¹H₂¹⁶O seems to underlie major biological effects of the water

- Drinking AquaSlap[™] water enriched with ¹H₂¹⁶O improves functional performance in healthy people during aerobic exercises, a physiological state with high demand on energy production
- The consumption of AquaSlap[™] leads to normalization hemodynamic parameters of healthy people

Drinking Water enriched with ¹H₂¹⁶O has the significant potential to increase of energy resources of healthy people and represents a promising approach to improvement of quality of life of healthy people